Basim A. Hussain
Environmental Engineering,
Ministry of Science and
Technology Directorate of
Hazardous Wastes Treatment and
Disposal, Baghdad, Iraq
basimsaidi@hotmail.com

Shahlaa E. Ebrahim
Environmental Engineering
University of Baghdad,
Environmental Engineer
Department, Baghdad, Iraq
shahlaa.ebrahim@fulbrightmail.org

Abbas H. Sulaymon
Chemical Engineering, University
of Baghdad, Environmental
Engineer Department, Baghdad,
Iraq. inas_abbas@yahoo.com

Cement Based Solidification/Stabilization
Leaching Performances of Selected Heavy
Metal Ions under Different pH
Extractions

Abstract- Liquid to solid partitioning as a function of pH leaching
Procedure LSP EPA method 1313 was carried out to test the
effectiveness, performance and efficiency of the cement-based
solidification / stabilization (S/S) of heavy metals contaminated sand
samples using Ordinary Portland Cement OPC type A. Two cement
based mix designs (7 and 25%) have been applied to (S/S) sand
contaminated samples with different heavy metal ions (Pb, Cu, Cr, and
Cd) having the following concentrations (500, 1500 and 3000 mg/kg).
Fixed water to cement ratio of 0.45 was maintained for all the
experiments. Effective retention levels for the heavy metal ions was
achieved using a 25% OPC mix ratio to (S/S) the contaminated samples
even when the extraction solutions were of pH levels as low as 2.
Leaching experiments showed that as the pH level of the extraction
solution is reduces and as the OPC content in the (S/S) samples is reduced
the more heavy metal ions that can leach out. Up to 80% of chromium,
cadmium, lead, and copper ions leachability can be prevented when
higher cement content is introduced to the solidification / stabilization
process under the same pH extraction. Acidic extraction effects and
solubilized the Calcium – Silica – Hydrate (C-S-H) gel that is created by
The OPC binder, which holds, and contain the heavy metal ions and thus
results in more release of those ions into the extraction solutions. The
alkaline environments provided by the cement binder are believed to have
participated in the precipitation of several metal ions such as cadmium and
lead io, leading to their less detection in the leaching extracts.
Alkaline extraction experiments (pH 8-13) showed that the mobility of the
metal ions under the same experimental conditions followed the order of
\(pb > Cr > Cu > Cd\) in samples of various cement contents.

Keywords- Solidification / Stabilization; Heavy Metals; LSP; Leaching.

How to cite this article: B.A. Hussain, Sh.E. Ebrahim and A.H. Sulaymon, “Cement Based Solidification/
Stabilization Leaching Performances of Selected Heavy Metal Ions under Different pH Extractions,”